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Abstract Xylella fastidiosa is a xylem-limited gram-

negative bacterium causing a high number of severe

diseases to many agricultural and forestry plants. We

developed a Maxent model to detect the current and

future potential distribution of X. fastidiosa in the

Mediterranean under climate change. For future

projections, we used Hadley Centre’s HADGEM2-

ES models for four representative concentration

pathways (2.6, 4.5, 6.0 and 8.5) and two time

periods (2050 and 2070). Maxent models achieved

excellent levels of predictive performance as can be

seen from AUC, TSS and AUCdiff values. The

potential distribution obtained for the current time

comprises Portugal, Spain, Italy, Corsica, Albania,

Montenegro, Greece and Turkey as well as all

countries of northern Africa and the Middle East. X.

fastidiosa is not predicted to change its distribution in

the Basin in response to climate change. Our study,

however, highlights that X. fastidiosa may overcome

the current boundaries outside Italy. Given the poten-

tially high risk, we urge that the listed countries

consider appropriate and preventive phytosanitary

measures to avoid the introduction of the bacterium.

Keywords Biological invasion � Emerging pest �
Maxent � Olive quick decline syndrome � Species

distribution models

Introduction

Species distribution models (SDMs) are essential to

understand the ecological and evolutionary factors

that determine spatial patterns useful for species

occurrence (Guisan and Zimmermann 2000). SDMs

provide increasingly realistic scenarios to explain the

influence of bioclimatic variables on the epidemiology

of pathogens, especially in the context of emerging

plant diseases (Fabre et al. 2011; Aguayo et al. 2014;

Shabani et al. 2014; Bosso et al. 2016). The plant

pathogens might have increased their distribution or

pathogenic action due to improved environmental

conditions for disease development in new regions
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(Garrett et al. 2006). SDMs utilize global climate

models (GCMs) and gas emission scenarios to assess

the current habitat suitability and future habitat ranges

of particular species due to the influence of climate

change (Ruosteenoja et al. 2003; Rosentrater 2010).

They are not intended to provide accurate predictions

regarding the future state of the climate system at any

given point in time, but to establish the envelope that

future climate could conceivably occupy.

While many studies on plant emerging diseases

have dealt with the introductions of pathogens in a new

area, the impacts of climate change on plant diseases

are still poorly studied, especially those caused by

pathogenic bacteria, fungi and viruses (Fabre et al.

2011; Aguayo et al. 2014; Shabani et al. 2014; Bosso

et al. 2016). Xylella fastidiosa (Wells et al. 1987) is a

xylem-limited bacterium that affects several econom-

ically important plants (Janse and Obradovic 2010;

Purcell 2013). Pathogenic strains of X. fastidiosa were

first recognized in North and South America and Asia

in the 1990s. This bacterium was first observed in

Europe near Gallipoli (Apulia Region), southern Italy,

in October 2013 (Saponari et al. 2013; Cariddi et al.

2014; Loconsole et al. 2014), and since its initial

outbreak it has spread across the region causing

considerable damage to olive groves (Saponari et al.

2014). X. fastidiosa is transmitted by various species

of sap-sucking hopper insects and in Apulia it is

vectored to olive trees by the spittlebug, Philaenus

spumarius (Hemiptera: Aphrophoridae) (Saponari

et al. 2014).

Hoddle (2004) used X. fastidiosa records collected

in California to project a distribution model to the rest

of the world. The model was developed using the

climatic response of this plant pathogen from the native

geographic range. The main prediction was that cold

temperatures would not allow X. fastidiosa to colonize

France and the northern and central areas of grape

production in Spain and Italy. Bosso et al. (2016)

developed a Maxent model for X. fastidiosa in Italy

based on Apulia records. The Maxent model predicted

a high probability of X. fastidiosa occurrence in

Apulia, Calabria, Basilicata, Sicily, Sardinia and

coastal areas of Campania, Lazio and south Tuscany.

Precipitation of the driest and wettest months were

found to be the main variables influencing model

performance. Based on the model predictions, X.

fastidiosa had a high probability of colonizing areas

characterized by: (a) relatively low altitude (0–150 m

a.s.l.); (b) precipitation in the driest month\10 mm,

wettest month ranging between 80 and 110 mm and

warmest quarter \60 mm; (c) mean temperature of

coldest quarter C8 �C; (d) agricultural areas compris-

ing intensive agriculture, complex cultivation patterns,

olive groves, annual crops associated with permanent

crops, orchards and vineyards; forest (essentially oak

woodland); and Mediterranean shrubland.

In the current study we broaden the scope of

that analysis and generate models for the entire

Mediterranean Basin projecting potential distributions

of X. fastidiosa in time over different epochs and

according to different scenarios of climate change.

Materials and methods

Study area

We included the entire Mediterranean basin territory

between latitudes 46�N–22�N and longitudes 14�E–

39�E (corresponding to ca. 2,051,000 km2) in this

analysis (Fig. 1).

Selection of X. fastidiosa presence records

We extractedX. fastidiosa occurrences from the online

database set up by the Apulia Region government:

http://webapps.sit.puglia.it/freewebapps/Monitoraggio

XFSintesi. We used only observations of olive trees

infected by X. fastidiosa in 2014–2015. The resulting

database included 1258 records mostly regarding the

southernmost part of Apulia. Records were screened in

ArcGis (version 9.2) for spatial autocorrelation using

average nearest neighbor analyses and Moran’s I

measure of spatial autocorrelation to remove spatially

correlated data points (e.g. Russo et al. 2014, 2015;

Bosso et al. 2016). After this selection, 50 fully inde-

pendent presence records for X. fastidiosa were used to

generate SDMs.

Selection of ecogeographical variables

To build SDMs for X. fastidiosa, we used a set of 19

Ecogeographical Variables (EGVs). All bioclimatic

variables were obtained from the WorldClim database

(www.worldclim.org/current) (Hijmans et al. 2001).

All variable formats were raster files (grid) with a
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30-arc second resolution (0.93 9 0.93 km =

0.86 km2 at the equator). To decrease the number of

variables for the final distribution models, we first

eliminated the highly correlated predictors and

retained those with a Pearson’s |r| B 0.80 (Elith et al.

2010). From this first set of predictors, we considered

only those most relevant to the species’ ecological

requirements following Hoddle (2004) and Bosso

et al. (2016). This led to a final set of 9 variables

(Table 1) used to model current and future potential

distribution of X. fastidiosa in the Mediterranean

basin. We only used bioclimatic variables rather than

other physical environmental or land cover variables

in the model in order to provide an indication of

Fig. 1 Current species

distribution models (SDMs)

of X. fastidiosa. a logistic

map; b binary map. Logistic

map shows the probability

of presence ranging from 0

(green) to 1 (red). Binary

map shows theprobability of

presence: 0 (light grey); 1

(dark grey)

Table 1 List of ecogeographical variables used for this study,

type and measurement unit

Type Ecogeographical variable Unit

Climatic Annual mean temperature �C
Mean temperature of wettest quarter �C
Mean temperature of driest quarter �C
Mean Temperature of warmest quarter �C
Mean temperature of coldest quarter �C
Precipitation of wettest month mm

Precipitation of driest month mm

Precipitation of warmest quarter mm

Precipitation of coldest quarter mm
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changing climatic suitability assuming all else remains

equal (e.g. Porfirio et al. 2014).

Maximum entropy models

To model X. fastidiosa distribution we employed

Maxent ver. 3.3.3 k (http://www.cs.princeton.edu/

*schapire/maxent) (Phillips et al. 2006). This algo-

rithm usually results in good predictive models com-

pared with other presence-only models and is especially

suited to deal with scarce presence-only data (e.g. Elith

et al. 2006). Because it is based on a generative

approach, rather than a discriminative one, this tech-

nique performs well when the amount of training data is

limited. Moreover, it has a good ability to predict new

localities for poorly known species (Rebelo and Jones

2010; Bosso et al. 2013; Russo et al. 2015). To build the

models, we used the presence records of X. fastidiosa

selected as described above and the EGVs listed in

Table 1. In the setting panel we selected the following

options: random seed; remove duplicate presence

records; write plot data; regularization multiplier (fixed

at 1); 1000 maximum iterations; and 50 replicate effects

with bootstrap-replicated run type. A set of 10,000

background points was randomly placed over the

Apulia region. A cross-validation of the models was

implemented by randomly extracting 70 % of records

for training and the remaining 30 % to test the model.

The procedure was repeated 20 times. The average final

map obtained had a logistic output format with suit-

ability values from 0 (unsuitable habitat) to 1 (suit-

able habitat). The 10th percentile (the value above

which the model classifies correctly 90 % of the train-

ing locations) was selected as the threshold value for

defining the species’ presence. This is a conservative

value commonly adopted in species distribution mod-

elling studies, particularly those relying on datasets

collected over a long time by different observers and

methods (e.g. Rebelo and Jones 2010; Bosso et al. 2013;

Russo et al. 2015). This threshold was used to reclassify

our model into binary presence/absence maps. The

model was projected to the entire Mediterranean basin.

In order to project the models calibrated in Apulia over

Fig. 2 Suitable (black bars) and unsuitable (grey bars)

surface areas (in km2) for X. fastidiosa in the Mediterranean

Basin. Future projections were obtained with HAdGEM2-ES

(HG) models at four representative concentration pathways

(RCPs) (RCPs 2.6, 4.5, 6.0 and 8.5) and two time peri-

ods: 2050 (50) and 2070 (70). Error bars represent Standard

Deviation. No significant difference was detected across

different scenarios and time steps

cFig. 3 Maxent species distribution outputs for X. fastidiosa

obtained with HadGEM2-ES (HG) models for four representa-

tive concentration pathways (RCPs) (RCPs 2.6, 4.5, 6.0 and 8.5)

and scenarios for 2050 (50). Logistic maps show the probability

of presence ranging from 0 (green) to 1 (red). Binary maps show

the probability of presence: 0 (light grey); 1 (dark grey). a HG-

RCP2.6-50 logistic map; b HG-RCP2.6-50 binary map; c HG-

RCP4.5-50 logistic map; d HG-RCP4.5-50 binary map; e HG-

RCP6.0-50 logistic map; f HG-RCP6.0-50 binary map; g HG-

RCP8.5-50 logistic map; h HG-RCP8.5-50 binary map
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the Mediterranean basin territory, the variables in the

projection area must meet a condition of environmental

similarity with the environmental data used for cali-

brating the model. Therefore, we first ascertained that

this condition occurred by inspecting the Multivariate

Environmental Similarity Surfaces (MESS) generated

by Maxent (Elith et al. 2010). Finally, we analyzed the

MoD map to detect the most dissimilar variables

between the training area and suitable projection area of

X. fastidiosa in the Mediterranean basin, at current time

as well as under different climate scenarios i.e., the

variables that are furthest outside their training range

(Elith et al. 2010).

SDMs of X. fastidiosa under climate change

Future climate projections of X. fastidiosa were

derived from one GCM for four representative

concentration pathways (RCPs) (RCP 2.6, 4.5, 6.0

and 8.5) and over two time periods: 2050 (average for

2041–2060) and 2070 (average for 2061–2080).

RCPs are greenhouse gas concentration trajectories

adopted by the IPCC for its fifth Assessment Report in

2014 (Rogelj 2013). The CO2-equivalent concentra-

tions are 490, 650, 850 and[1370 ppm, for RCP 2.6,

4.5, 6.0 and 8.5, respectively (Meinshausen et al.

2011). The GCMs data were obtained from World-

Clim-Global Climate Data (http://www.worldclim.

org/cmip5_30s). Hadley Centre’s HADGEM2-ES

(HG) model offers the best performance for the

Mediterranean basin (Brands et al. 2011, 2013; Nabat

et al. 2013; Mariotti et al. 2015). All Maxent param-

eters to model X. fastidiosa under climate change were

the same as described above.

Statistical analysis

We used ANOVA to compare the mean (n = 20

replicates) suitable and unsuitable areas for X.

fastidiosa for the current time with those (n = 20)

generated for each of the climatic scenarios. The

analysis was done on binarized distribution maps.

Tests were carried out in XLSTAT version 2013.1.

and significance threshold set at p\ 0.05.

Model validation

We tested the predictive performance of the models

with different methods: the receiver operated charac-

teristics, analyzing the area under curve (AUC)

(Fielding and Bell 1997); the true skill statistic

(TSS) (Allouche et al. 2006); and the minimum

difference between training and testing AUC data

(AUCdiff) (Warren and Seifert 2011). Such statistics

were averaged across the 20 replicates run on the 70 %

(training) versus 30 % (testing) dataset split. These

model evaluation statistics range between 0 and 1

(AUC and AUCdiff) and between -1 and 1 (TSS):

excellent model performances are expressed respec-

tively by AUC and TSS values close to 1 and AUCdiff

close to 0.

Results

SDMs of X. fastidiosa and model validation

Our models showed high levels of predictive perfor-

mances as can be seen from the values of AUC (training,

0.971 ± 0.030; test, 0.952 ± 0.039), AUCdiff (0.019 ±

0.001) and TSS (0.854 ± 0.024). The model achieved a

1.82 regularized gain value indicating an excellent fit

with occurrence data. Five variables contributed to a total

95 % of model prediction. The analysis of single

variable contributions showed that precipitation during

driest (30.7 %) and wettest (30.3 %) months were the

main factors influencing model performance. Precipita-

tion of driest quarter and mean temperature of coldest

and warmest quarter provided a total contribution of

35.1 %. Based on the model’s predictions, X. fastidiosa

has a greater probability ([0.7) of occurring in areas

characterized by low precipitation in the driest month

(\10 mm) and in the driest quarter (\60 mm), medium

precipitation in the wettest month (80–110 mm), and

mean temperature[8 �C and[22 �C in the coldest and

warmest quarters, respectively. The current potential

distribution comprises Portugal, Spain, Italy, Corsica,

Albania, Montenegro, Greece and Turkey as well as all

bFig. 4 Maxent species distribution outputs for X. fastidiosa

obtained with HadGEM2-ES (HG) models for four representa-

tive concentration pathways (RCPs) (RCPs 2.6, 4.5, 6.0 and 8.5)

and scenarios for 2070 (70). Logistic maps show the probability

of presence ranging from 0 (green) to 1 (red). Binary maps show

the probability of presence: 0 (light grey); 1 (dark grey). a HG-

RCP2.6-70 logistic map; b HG-RCP2.6-70 binary map; c HG-

RCP4.5-70 logistic map; d HG-RCP4.5-70 binary map; e HG-

RCP6.0-70 logistic map; f HG-RCP6.0-70 binary map; g HG-

RCP8.5-70 logistic map; h HG-RCP8.5-70 binary map
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countries of northern Africa and the Middle East

(Fig. 1a, b). Its northernmost geographic limits corre-

spond to Portugal, Spain, Corsica, southern Italy,

Montenegro, Albania, southern Greece and Turkey.

We rejected the hypothesis that potential distribution of

X. fastidiosa is significantly affected by climate change

in the Mediterranean basin for all HG scenarios:

precisely, for neither of the HG models used in this

study, we recorded significant changes in habitat

suitability (Fig. 2, ANOVA: F = 1.56, n.s.; Figs. 3, 4).

MESS analysis indicated that the central and southern

Mediterranean basin had moderate (values around to 0)

to high (positive values) environmental similarity with

the training area. The MoD map showed that the

variables with the highest contribution useful to detect

the potential distribution of X. fastidiosa were similar

between the training and suitable projection areas in the

Mediterranean basin at currentand future times (Fig. S1).

Discussion

Model performance and limitations

Both current and future potential distribution models

that we generated for X. fastidiosa in the Mediter-

ranean showed considerable power, mainly supported

by the high gain value (1.8) achieved. AUC values

such as those we obtained ([0.9) are among the

highest reported for published models (e.g.: Rebelo

and Jones 2010; Domı́guez-Vega et al. 2012; Russo

et al. 2014; Di Febbraro et al. 2015), and demonstrate a

very high predictive capacity (Elith et al. 2010). This

was further supported by AUCdiff and TSS values

(Russo et al. 2014, 2015).

Although our models provided a strong statistical

validation and robust maps of X. fastidiosa’ potential

distribution, we are aware that some limitations may

arise from not considering ‘‘realized niche’’ predicting

factors, such as biotic interactions as well as plant-

pathogen-antagonist interactions. Furthermore, our

model did not take into account the potential distri-

bution of the bacterium’s vector and land cover

dynamics. Actually, P. spumarius is the known vector

of X. fastidiosa in Italy (Saponari et al. 2014). This

insect is widespread in the Mediterranean Basin and is

considered ecologically flexible (Halkka et al. 1967)

thus its presence in the model is not expected to

represent a constraint for the habitat suitability

prediction of X. fastidiosa. Moreover, future projec-

tions of models such as ours inevitably disregard the

effects of land use modifications, given the inherent

uncertainty in predicting changes in the physical

environmental or land cover. Still, our models,

developed for a vast geographical area, can surely

help detect the influence of factors acting on a broad

spatial scale such as bioclimatic variables on species’

spatial patterns.

Predicting the potential distribution of X.

fastidiosa in the Mediterranean basin

X. fastidiosa seems to be a pathogen potentially

threatening plants throughout the Mediterranean basin

currently and in the future. The main reason for the

exclusion of X. fastidiosa from central and northern

European countries is cold stress that can affect both

the bacterium and its vector (Halkka et al. 1967; Ejere

and Okpara 2010). In agreement with the results

obtained using CLIMEX by Hoddle (2004), our model

confirms that the Mediterranean climate can be

particularly favourable for X. fastidiosa. Purcell

(1997) and Hoddle (2004) predicted that the bacterium

could colonize the Italian central and southern areas

whose climatic regime is especially favourable for its

vector. In contrast, cold stress would not allow the

bacterium to spread in the grape-growing provinces of

Northern Italy, Burgundy and Champagne regions of

France, Central and Northern region of Spain and

Baltic region. However, under the scenarios RCP 4.5,

6.0 and 8.5 (Figs. 3c–h, 4c–h), also some areas of

France may be suitable for X. fastidiosa. As found for

North America, our model predicted a preference for

internal and coastal areas with mild winters at low

altitudes. For instance, in the USA, X. fastidiosa

occurs in areas whose winter temperatures

are C1-4 �C (Purcell 1997). In contrast, it appears

less harmful where winter is colder, such as at higher

altitudes, because freezing events can strongly

decrease X. fastidiosa viability (Hopkins and Purcell

2002; Hoddle 2004). Specifically, Lieth et al. (2011)

found that temperatures \6 �C may kill this patho-

genic bacterium.

According to our results, climate change would not

affect the future potential distribution of X. fastidiosa

L. Bosso et al.
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significantly for all HG models, regardless of the time

and greenhouse scenarios selected. This is because the

Mediterranean basin is already potentially suitable for

X. fastidiosa and such suitability cannot increase

further because the spatial distribution of values for

the variables that contribute the most to the model

does not change sufficiently under any of the scenarios

or time steps used (Fig. 1a, b). Similarly, Fabre et al.

(2011) reported the main EGVs influencing Diplodia

pinea presence in France were, besides host species

presence (essentially Pinus pinaster, Pinus nigra and

Pinus sylvestris), winter temperature and summer rain,

both of which are positively correlated with cone

colonization. The climate became more favourable to

D. pinea presence over the last 15 years compared

with the previous 30 years. By contrast, future

climatic changes over the next 60 years should have

far less impact on D. pinea (Fabre et al. 2011) as well

as for X. fastidiosa (this study).

Cold stress also seems to limit the distribution of

Phytophthora alni in the Mediterranean basin.

Aguayo et al. (2014) showed that the climate of

south western France was much more favourable to

P. alni than that of the northeast, because it seldom

limited the overwintering of the pathogen. On the

other hand, Shabani et al. (2014) predicted an

increase of suitable areas for Fusarium oxysporum

in Europe with a northerly shift of that pathogen in

the future. This projection was supported by the two

GCMs used by Shabani et al. (2014) which indicate

that about 700 million ha in Europe will be at high

risk of being affected by the fungus by 2050 and

2100 respectively.

A fundamental requirement for the establishment of

any species outside its native range is that the recipient

location must have a climate comparable to that of the

invader’s original range. X. fastidiosa is therefore a

real emerging threat for Italy and the entire Mediter-

ranean basin, not only for the grapevine (Hoddle 2004)

and olive groves (Saponari et al. 2014), but, in

principle also for stone fruits and citrus cultivation

as well as Mediterranean shrubland (Janse and

Obradovic 2010). Our work highlights that while

climate change is unlikely to affect the future distri-

bution of X. fastidiosa, a vast area of the Mediter-

ranean Basin is exposed to a great risk given its high

suitability so the countries involved should be targeted

with appropriate phytosanitary preventive measures to

avoid the spread of the bacterium.
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